Specific heat of nanocrystals

نویسندگان

  • I Avramov
  • M Michailov
  • Georgi Bontchev
چکیده

The present study extends the Einstein model for heat capacity of solids to nanoclusters. In the case of small phases the contribution of surface energy to overall thermodynamic properties of the system is essential. On that physical background, the heat capacity depends on the size of cluster through its interface energy. Employing the same relation between Einstein temperature and the cluster melting point as that for the infinitely large phase, we derive a simple expression for the heat capacity, CV (n), dependence on the number of atoms in the cluster, n. We explain the experimentally observed increase of CV (n) compared to CV (∞) of an infinitely large homogeneous phase, with lowering of the Einstein temperature due to the contribution of the cluster interface energy. The heat capacity in the model presented scales at high T with the classical Dulong and Petit 3R limit and tends to zero for T → 0 as required by the third law of thermodynamics. The model reported could be applied to various systems with nanoparticles, where the knowledge of specific heat is important; for example formation of nanocomposite materials, the initial stages of formation of fogs, smog and clouds, etc. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Debye Temperatures and Specific Heat of Nanocrystals

The present study deals with the contribution of the surface atomic layer to the specific heat of nanocrystals. In the case of small phases with comparable number of bulk and surface atoms, the variation of heat capacity with respect to that of infinitely large phase is significant. To evaluate this variation, in the framework of the classical Debye model, we introduce surface excess heat capac...

متن کامل

The synthesis of nitrogen/sulfur co-doped TiO2 nanocrystals with a high specific surface area and a high percentage of {001} facets and their enhanced visible-light photocatalytic performance

Nitrogen/sulfur co-doped anatase TiO2 nanocrystals with a high specific surface area and a high percentage of {001} facets were synthesized by a solvent-thermal process followed by the calcination with thiourea at an optimum heat treatment temperature. Under current experimental conditions, the optimum heat treatment temperature was found at 300°C, which successfully introduced nitrogen and sul...

متن کامل

A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals

Practical, efficient synthesis of metal oxide nanocrystals with good crystallinity and high specific surface area by a modified polymer-network gel method is demonstrated, taking ZnO nanocrystals as an example. A novel stepwise heat treatment yields significant improvement in crystal quality. Such nanophase materials can effectively degrade common organic dyes under solar radiation and can perf...

متن کامل

Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor

      In this research, TiO2 nanoparticles were synthesized by a simple wet chemical method. TiCl4 was used as precursor in hydrogen peroxideand ethanol. The TiO2 nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron dispersive spectroscopy (EDS) and UV-Vis spectrophotome...

متن کامل

Calculation of Heat Transfer Coefficient of MWCNT-TiO2 Nanofluid in Plate Heat Exchanger

The objective of the present study is the synthesis of MWCNT-TiO2 hybrid nanostructures by solvothermal synthesis method with TiCl4 as precursor. The heat transfer enhancement due to the use of MWCNT-TiO2 nanofluid was investigated. As-prepared hybrid materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that MWCNTs were uniformly dec...

متن کامل

Inorganic Photocatalytic Enhancement: Activated RhB Photodegradation by Surface Modification of SnO2 Nanocrystals with V2O5-like species

SnO2 nanocrystals were prepared by precipitation in dodecylamine at 100 °C, then they were reacted with vanadium chloromethoxide in oleic acid at 250 °C. The resulting materials were heat-treated at various temperatures up to 650 °C for thermal stabilization, chemical purification and for studying the overall structural transformations. From the crossed use of various characterization technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008